Large Scale Infrared-Based Remote Sensing of Turbulence Metrics in Surface Waters: Going Beyond Mean Flow
DOI:
https://doi.org/10.18409/ispiv.v1i1.53Keywords:
turbulence, remote sensing, infrared, PIV, riversAbstract
In recent years field-scale applications of image-based velocimetry methods, often referred to as large scale particle image velocimetry (LSPIV), have been increasingly deployed. These velocimetry measurements have several advantages—they allow high resolution, non-contact measurement of surface velocity over a large two dimensional area, from which the bulk flow can be inferred. However, visiblelight LSPIV methods can have significant limitations. The water surface often lacks natural features that can be tracked in the visible and generally requires seeding with tracer particles, which creates concerns regarding the fidelity with which tracer particles track the flow, and introduces challenges in achieving sufficient and uniform seeding density, in particular in regions with appreciable velocity accelerations such as turbulence. In LSPIV, image collection is generally limited to daylight hours, and can suffer from non-uniformity of illumination across the camera’s field of view. Due to these issues LSPIV often requires spatio-temporal averaging, and as a result is generally able to extracting the mean, but not the instantaneous, velocity field, and hence is often not a suitable tool for calculating turbulence metrics of the flow.
Downloads
Published
Issue
Section
License
Copyright for all articles and abstracts is retained by their respective authors