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Abstract 
This work presents the main results of the first Lagrangian Particle Tracking challenge, conducted within the framework of 
the European Union’s Horizon 2020 project HOMER (Holistic Optical Metrology for Aero-Elastic Research), grant 
agreement number 769237. The challenge, jointly organised by the research groups of DLR, ONERA and TU Delft, 
considered a synthetic experiment reproducing the wall-bounded flow in the wake of a cylinder which was simulated by LES. 
The participants received the calibration images and sets of particle images acquired by four virtual cameras, and were asked 
to produce as output the particles positions, velocities and accelerations (when possible) at a specific time instant. Four 
different image acquisition strategies were addressed, namely two-pulse (TP), four-pulse (FP) and time-resolved (TR) 
acquisitions, each with varying tracer particle concentrations (or number of particles per pixel, ppp). The participants’ outputs 
were analysed in terms of percentages of correctly reconstructed particles, missed particles, ghost particles, correct tracks and 
wrong tracks, as well as in terms of position, velocity and acceleration errors, along with their distributions. The analysis of 
the results showed that the best-performing algorithms allow for a correct reconstruction of more than 99% of the tracer 
particles with positional errors below 0.1 pixels even at ppp values exceeding 0.15, whereas other algorithms are more prone 
to the presence of ghost particles already for ppp < 0.1. While the velocity errors remained contained within a small percentage 
of the bulk velocity, acceleration errors as large as 50% of the actual acceleration magnitude were retrieved. 
 

1 Introduction 
Since the introduction of tomographic particle image velocimetry (shortly tomo-PIV, Elsinga et al., 2006, Scarano, 2012) for 
volumetric flow velocity measurements, much research has been conducted aiming at enhancing the measurement accuracy 
and spatial resolution, as well as reducing the computational cost of the image analysis. In the first years of tomo-PIV 
development, the three-dimensional distribution of tracer particles in the measurement domain was performed via a voxel-
based reconstruction of their intensities, using the MART approach (Herman and Lent 1976) or one of its evolutions 
(multiplicative first guess MFG, Worth and Nickels, 2008; multiplicative-line of sight MLOS-MART, Atkinson and Soria, 
2009; motion tracking enhancement MTE-MART, Novara et al., 2010, among others). The three-dimensional velocity field 
was then evaluated via cross-correlation analysis (Scarano, 2012), similar to planar PIV. The sparsity of the particles 
distribution in three-dimensional space has been exploited to enhance the reconstruction accuracy (Champagnat et al., 2014) 
as well as to increase the computational efficiency (Cornic et al., 2015). For double-frame recordings, Cornic et al. (2020) 
recently introduced the double-frame tomographic PTV (DF-TPTV) approach that first uses voxel grids to find the possible 
position of particle candidates and obtain a coarse predictor of their displacements via a correlation analysis, and finally 
determines the individual particles’ intensities and exact positions via a global optimisation procedure.  
Wieneke (2013) proposed an iterative particle reconstruction (IPR) algorithm where the distribution of the tracer particles in 
the volumetric measurement domain is represented from the beginning by three-dimensional positions and intensity values 
rather than by a voxel-based intensity distribution. The IPR algorithm requires detailed knowledge of the spatially varying 
optical transfer function (OTF) between the locations in the physical domains and the cameras pixels, which is achieved via 
the calibration and application of a non-uniform OTF as introduced by Schanz et al. (2012). The IPR approach was compared 
with the conventional three-dimensional triangulation, MLOS, and MART, exhibiting higher performances than the former 
two approaches and similar performances to MART up to ppp =0.05. Schanz et al. (2016) combined the iterative particle 
reconstruction from Wieneke (2013) with the temporal information from time-resolved measurements to predict the particles’ 
locations at successive time instants and correct their positions by a local image matching (‘shaking’) step, which therefore 
identifies particles’ tracks thus performing Lagrangian Particle Tracking (LPT). The approach, named Shake-The-Box (STB), 
enables the evaluation of the velocity and Lagrangian acceleration of individual tracer particles at high particle image densities 
exceeding 0.1 ppp. Comparison with the conventional correlation-based tomo-PIV processing showed higher performance of 
the STB approach in terms of number of correctly reconstructed particles, accuracy of the reconstruction, and suppression of 
ghost particles (Kähler et al., 2016). For high-speed flows, where time-resolved image recording is often unfeasible due to 
hardware limitations, the applicability of the STB approach has been recently extended via the concept of Multi-Pulse STB 
employing multiple systems (Novara et al., 2016a) or exposures (Novara et al., 2019).    
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Alternative solutions to the problem of particles reconstruction and flow field evaluation have been proposed over the years. 
Yang et al. (2018) proposed modification to the “shaking” phase of the STB algorithm and resolved the optimization with the 
ensemble technique. This technique is further integrated into the Kernelized Lagrangian Particle Tracking (KLPT) approach 
in Yang and Heitz (2021), in which a sampling-learning-detection strategy is adopted. A dataset describing an ensemble of 
the possible state of one particle with their back-projections is firstly sampled. Then a function is learned from this sampled 
dataset that maps the image intensities to the physical coordinates. Finally, the particle position is detected by applying the 
learned function to image recordings. To improve the initialisation accuracy of STB and KLPT, Khojasteh et al. (2021) 
proposed using Lagrangian Coherent Structure (LCS) to check if an initialised particle is locally coherent with its neighbour 
coherent motions. Lasinger et al. (2018) introduced an approach for particle reconstructions based on the joint minimisation 
of an energy function accounting for the deviation between reconstructed particles and image recordings as well as for the 
sparsity of the particles in the three-dimensional space. In the same work, the velocity field was evaluated using a variational 
model that included physical information on the flow, such as incompressibility and viscosity. The approach was further 
developed in Lasinger et al. (2019), where the tracer particles’ distribution and the velocity field were jointly reconstructed 
via an integrated energy minimisation process. In the Lagrangian PIV approach proposed by Yang et al. (2019), an Eulerian 
description of the velocity field is sought which minimises the positional difference between the particle image recordings at 
time k and the back-projected particles reconstructed from the information at previous time instants. 
From the discussion above, it emerges that the evaluation of the three-dimensional flow fields from particle image recordings 
is a topic of active research, and that different research groups have tackled this problem with different approaches. The aim 
of the first LPT challenge, whose main results are summarised in this work, is to comparatively assess the different approaches 
in terms of the accuracy of the particles’ reconstruction and of their velocities and accelerations via the use of a dedicated 
synthetic database.  

2 Dataset and test cases 

2.1 Dataset description 
This section provides a brief description of the dataset employed in the LPT challenge. A more detailed description of the 
simulation parameters is reported in the communication of Leclaire et al. (2021), also presented at the ISPIV 2021 symposium. 
The synthetic experiment reproduces the turbulent wall-bounded flow in the wake of a cylinder, considered representative of 
many turbulent flows where large fluctuations both in the velocity and the pressure take place. Whereas the simulation was 
performed for an air flow in quasi-incompressible conditions, scaling was conducted to transpose it to the virtual experimental 
context of water at bulk velocity Vꝏ = 0.667 m/s. The cylinder had a diameter D = 0.01 m, and was located at a gap distance 
G = 0.01 m from the wall, where a turbulent boundary layer was present with thickness δ ≈ 60 mm; the momentum thickness 

Reynolds number 10 mm upstream of the cylinder was Reθ = 4,150. According to literature (Wang and Tan 2008), these 
conditions lead to vortex shedding in ground effect, thus yielding large pressure fluctuations on the wall. A sample of the 
instantaneous flow field is shown in Figure 1. The flow region used for the LPT challenge has dimensions of 0.1 � ×

0.05 � × 0.03 � (∆X × ∆Y × ∆Z, being X, Y and Z the streamwise, spanwise and wall-normal directions respectively). 
Such domain is centred in span, with its upstream face located 0.035 � downstream of the cylinder centre, and its bottom 
face located at the wall. 
 

 
Figure 1: Snapshot of the instantaneous flow field, illustrating iso-surfaces of the Q-criterion colour-coded by streamwise velocity u, and 

contours of the static pressure.  
 
Synthetic particle images were generated considering four virtual cameras with sensor size of 1920×1200 pixels and 10 μm 
pitch, using pinhole projection. No Scheimpflug nor image distortion were simulated. The cameras viewed the measurement 
domain mainly from above, and were located along the X-axis at Y = 0 and height of about 600 mm above the wall, at angles 
of [-30, -10, 10, 30] degrees respectively. Based on the simulated cameras’ locations and lenses’ focal lengths (100 mm), each 
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back-projected pixel (	
���) (defined with a value close to the average size of pixel back-projections through the volume) 
corresponded to 60 µm in the object space. The particles were given a poly-disperse intensity distribution; the particle images 

were produced with a Gaussian (σ = 0.6) point-spread function to model diffraction limited imaging. Thermal and shot noise 
were also added to the images.  

2.2 Test cases 
Three different image acquisition strategies were considered, namely two-pulse (TP), four-pulse (FP) and time-resolved (TR). 
The TP case consisted of only one image pair with time separation ∆t = 600 µs, corresponding to a maximum pixel 
displacement of about 7 pixels in the camera images. In the FP case, the time separations between the four exposures t0, t1, t2, 
t3 of a sequence were [2∆t, ∆t, 2∆t] (again, with ∆t = 600 µs), with the first two exposures captured in the first image and the 
last two exposures captured in the second image. Finally, for the TR case, sequences of 50 or 100 images were considered 
depending of the number of particles per pixels (ppp), with time separation between two successive images of ∆t = 600 µs. 
The datasets were generated at ppp values of 0.005, 0.025, 0.05, 0.08, 0.12, 0.16 for the TP and FP cases, and also of 0.2 ppp 
for the TR case. The corresponding tracers’ concentrations was in the range between 0.043 particles/mm3 (ppp = 0.005) and 
1.7 particles/mm3 (ppp = 0.2). Calibration data, namely list of calibration points with their coordinates in the physical domain 
and the projections in the four camera images, were provided to the participants without any error. 
In the TP case, the participants were asked to produce as output the positions of the tracer particles at the time instants t0 (X0, 
Y0, Z0) and t1 (X1, Y1, Z1), respectively. In the FP case, the requested output consisted of the raw particles’ positions at the 
four time instants, plus the three components of the position (XM, YM, ZM), velocity (VX, VY, VZ) and acceleration (AX, AY, 
AZ) at the intermediate time instant �
 = ��� + ��� 2⁄ . In the TR case, the participants needed to provide the raw particles’ 
positions (X, Y, Z) as well as the fitted positions (Xfit, Yfit, Zfit), the velocity (VX, VY, VZ) and the acceleration (AX, AY, AZ) 
at time instant 40 for ppp ≤ 0.12 and 90 for ppp ≥ 0.16. The results could be submitted for any of the three cases, analysing 
the datasets from ppp = 0.005 to the maximum ppp value handled by the participants’ algorithms. The datasets were publicly 
released for download on March 9th, 2020 (https://w3.onera.fr/first_lpt_and_da_challenge/). Participants were then requested 
to upload their processed results by July 17th, 2020. 

2.3 Data analysis  
The data uploaded by the participants were analysed via the evaluation of the following parameter: 

- Percentage of correct particles: a reconstructed particle was defined as “correct” if its location fell within 60 µm ( or 
1 	
���) from a true particle; 

- Percentage of false particles (or ghost): a reconstructed particle was defined as “false” (or ghost) if its distance from 
a true particle exceeded 60 µm (or 1 	
���); 

- Percentage of false negatives (or missed particle): a true particle was considered missed when no particle was 
reconstructed within 60 µm (or 1 	
���) from the former; 

- Percentage of correct tracks: a track was defined correct when composed by all correct particles; 
- Percentage of wrong tracks: a track was defined wrong when at least one particle of the track was not correct (either 

missed or ghost); 
- Error of the particles’ position (for all cases), velocity and acceleration (only for the FP and TR cases), in terms of 

the mean error magnitude, as well as error distribution to detect the presence of any bias. It should be noted that the 
errors were evaluated only for the correct particles (not for the ghost particles), as the difference between the 
reconstructed particle position, velocity or acceleration and the actual values of the corresponding true particles. 

3 Participant and approaches 
A total number of six research groups participated to the LPT challenge, namely the Swiss Federal Institute of Technology in 
Zürich (ETHZ), the German Aerospace Centre from Göttingen (DLR), the French National Research Institute for Agriculture, 
Food & Environment (INRAE), the Kutateladze Institute of Thermophysics in Russia (IOT), the French Aerospace Lab 
(ONERA) and the German instrumentation company LaVision GmbH. A summary of the participating groups and the 
algorithms used is reported in Table 1. 
 

Table 1: List of cases of the LPT challenge, participants and their algorithms. 

Case Participant Algorithm Reference 

TP 

DLR Multi-Pulse Shake-The-Box Novara et al. (2019) 
ETHZ 3D Fluid Flow Estimation with Integrated Particle Reconstruction Lasinger et al. (2019) 
INRAE Lagrangian PIV Yang et al. (2019) 
LaVision Multi-Pulse Shake-The-Box Novara et al. (2019) 
ONERA Iterative Double Frame Tomographic PTV Cornic et al. (2020) 

FP DLR Multi-Pulse Shake-The-Box Novara et al. (2019) 
LaVision Multi-Pulse Shake-The-Box Novara et al. (2019) 

TR DLR (Time-resolved) Shake-The-Box Schanz et al. (2016) 
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INRAE Kernelized Lagrangian Particle Tracking Yang and Heitz (2021) 
INRAE Lagrangian PIV Yang et al. (2019) 
INRAE Lagrangian Coherent Track Initialization Khojasteh et al. (2021) 
IOT OpenLPT Tan et al. (2020) 
LaVision (Time-resolved) Shake-The-Box Schanz et al. (2016) 

 

3.1 Two-pulse test case 
The following groups participated to the TP case of the LPT challenge: DLR, ETHZ, INRAE, LaVision and ONERA. All 
participants processed the data in the entire data of ppp values from 0.005 to 0.16, with the exception of ONERA and INRAE 
that processed the data only up to ppp = 0.08. The algorithms used are briefly summarised hereafter. 
 
3.1.1 DLR: Multi-Pulse Shake-The-Box 
The approach used by the DLR group is the multi-Pulse Shake-The-Box from Novara et al. (2019). The approach first 
reconstructs the particles in three-dimensional space via the use of an advanced iterative particle reconstruction (IPR) from 
Jahn et al. (2021), based on Wieneke (2013). Then, a displacement predictor is obtained via the application of the Particle 
Space Correlation algorithm (PSC, Novara et al., 2016b) between the reconstructed particles of the two frames. For each 
particle in the first frame IPR reconstruction, a search radius δ2p is established around the predicted location to generate two-
pulse track candidates. Possible ambiguities between track candidates are solved by selecting the candidate that exhibits the 
lowest value of a cost function, which accounts for the variation of the peak intensity along a track and the difference with 
respect to the predicted position. Two iterations are performed, with δ2p = 1 pixel and 10 pixels, respectively.   
 
3.1.2 EHTZ: integrated particle reconstruction 
The ETHZ group used a variational approach to jointly estimate the sparse 3D particle locations at the reference time step 
and the dense flow field on a regular grid. Particles at the reference time step are triangulated iteratively, similar to IPR 
(Wieneke, 2013). The individual iteration steps are alternated with the optimization of the energy function: 

 ( ) ( ) ( ) ( )1
, , , ,

2 2D S SpE P C U E P C U E U E C
λ µ≡ + +   (1) 

where P, C and U represent the set of particles positions, the set of particles intensities, and the estimated flow field, 
respectively. The data term ED penalizes deviations between predicted and observed images by evaluating the 2D reprojection 
error in all camera views for both time steps. For the second time step, the particles are displaced by the estimated flow field 
U. The smoothness term ES is derived from the stationary Stokes equations and enforces a divergence-free flow field as well 
as a quadratic regularization per component of the flow gradient. The sparsity term ESp enforces sparsity of the reconstructed 
particle set by suppressing low-intensity ghost particles. For camera calibration, the polynomial camera model of Soloff et al. 
(1997) (38 parameters) is fitted. 
The output of this approach is a dense flow field on a regular grid. Particle locations for the second time step were, thus, 
obtained from displacements interpolated from the estimated flow field. For higher seeding densities (ppp from 0.05 to 0.16) 
a grid resolution of 200×100×60 was used, while for lower seeding densities (0.005, 0.025), a coarser grid of 167×84×50 was 
employed. Further details on the algorithm are reported in Lasinger et al. (2019). 
 
3.1.3 INRAE LaPIV 
The INRAE group processed the TP data with the Lagrangian PIV algorithm (LaPIV) from Yang et al. (2019). The algorithm 
first builds the particle positions in object space from the first frame using an IPR-like method (Wieneke, 2013). Then, the 
best Eulerian velocity field is sought that minimises a cost function accounting for the discrepancy between the image 
recording at the second time instant and the back-projected image using the optical transfer function OTF (Schanz et al., 
2012). The particle positions in the second frame are reconstructed by integrating the interpolated Eulerian velocity field, 
thus finding a temporal link between the two frames in accordance with the flow. Finally, the particles positions at the second 
frame are further optimised using one step of the Kernelized LPT approach (KLPT, Yang et al., 2018) to further increase 
accuracy. For the two-pulse case, the algorithm is reported to diverge for seeding concentrations beyond ppp = 0.08, because 
it is unable to accurately reconstruct the initial particles field due to the high seeding density. 
 
3.1.4 LaVision: Two-pulse Shake-The-Box 
Similarly to the DLR group, LaVision employed the two-pulse Shake-The-Box algorithm (Jahn et al., 2017), which makes 
use of an iterative combination of IPR and particle tracking. With respect to DLR, LaVision used more iterations, namely 
from 8 to 20 depending on the ppp value. For ppp > 0.12, an intermediate filtering of the trajectories via the use of a median 
filter was also performed to remove spurious trajectories. 
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3.1.5 ONERA: Iterative double-frame tomographic PTV 
The algorithm used by ONERA for processing the TP data is an improved version of the Double Frame Tomographic PTV 
(DF-TPTV) algorithm from Cornic et al. (2020). The DF-TPTV approach involves three stages. Firstly, particles 
reconstruction is performed on a fine voxel grid with a sparsity-based algorithm (Needell and Tropp, 2009) for each time step. 
Secondly, these reconstructions are expanded on a coarser grid, on which 3D correlation is performed (Cheminet et al., 2014), 
yielding a predictor displacement field that allows to efficiently match particles at the two time instants. As these particles 
are still located on a voxel grid, the final step achieves particle position refinement to their actual sub-voxel position by a 
global optimisation process, also accounting for their intensities. Residual images are built based on the unmatched particles; 

the three stages of the DF-TPTV approach are then iterated on the residual images, using a predictor estimated from the 
previously optimised particles. 
 

3.2 Four-pulse test case 
Only DLR and LaVision processed the data of the FP test case, both using their implementations of the Multi-Pulse Shake-
The-Box (MP-STB) algorithm from Novara et al. (2019). Similarly to the algorithm described in section 3.1.1 for the TP case, 
the approaches make use of advanced IPR (Jahn et al. 2021) and IPR (Wieneke, 2013) and a displacement predictor by 
Particle Space Correlation (PSC, Novara et al., 2016b). As for the TP case, for each particle in the first frame IPR 
reconstruction, a search radius δ2p is established around the predicted location to generate two-pulse track candidates. The 
latter are then extrapolated backwards and forwards and an additional search radius (δ4p) is adopted to identify four-pulse 
track candidates. The cost function used to solve ambiguities between candidates accounts not only for the variation of the 
particle peak intensity along the track and the distance from the predicted position as in the TP case, but also for the mean 
acceleration magnitude. While DLR used 21 iterations of the MP-STB algorithm, LaVision used a number of iterations from 
10 to 100 depending on the ppp. Both groups made use of a second order polynomial regression on the reconstructed particles 
positions to extract the position, velocity and acceleration at the intermediate time instant (time tM). Additionally, LaVision 
employed an intermediate spatial filtering of the trajectories via a median filter for ppp > 0.08 to remove spurious trajectories. 
Also, for ppp> 0.12 LaVision applied a time-average reference velocity field as a predictor for the initial reconstruction. 
In addition to the data processed by DLR and LaVision, a “Hacker” participant was also considered, following the approach 
of the 4th PIV challenge (Kähler et al., 2016). Hacker used the exact particle positions at times t0, t1, t2, and t3, and fitted a 
second order polynomial through the particles of a track to determine the position, velocity and acceleration at the 
intermediate time instant. The comparison between the results from Hacker and those from the other participants allows to 
evaluate to which extent the errors on position, velocity and acceleration are caused by errors in the particles reconstruction 
and due to the applied image noise, rather than by the temporal resolution of the simulated experiments.   

3.3 Time-resolved test case 
Four research groups processed the data of the TR test case, namely DLR, INRAE, IOT and LaVision. The INRAE group 
used three different algorithms (Kernelized LPT, Lagrangian PIV, and Lagrangian Coherency-based Tracks Initialisation), 
which are explained in the reminder of this section. Additionally, as for the FP case, a “Hacker” participant made use of the 
exact particle positions at three time instants centred around the time instant of interest, and evaluated the velocity and 
acceleration via a second order least-square polynomial regression and analytical time derivation. The range of datasets 
processed by each participant are summarised in Table 2. 
 

Table 2: Datasets (ppp cases) processed by the participants for the TR case. 
 0.005 0.025 0.050 0.080 0.120 0.160 0.200 
DLR        
INRAE KLPT        
INRAE LaPIV        
INRAE LCTI        
IOT        
LaVision        
Hacker        

 
3.3.1 DLR: Time-resolved Shake-The-Box 
The DLR group processed the images of the TR case using a three-pass Shake-The-Box algorithm (Schanz et al., 2016). The 
processing chain was optimised for the highest seeding density (0.2 ppp) and then applied to all other cases. For all seeding 
densities, the final 25 images of the time series were processed (25-49 for ppp ≤ 0.12; 75-99 for ppp ≥ 0.16). The first five 
images of the first pass used an extensive particle reconstruction via an advanced IPR approach (Jahn et al., 2021; Wieneke, 
2013). The allowed triangulation radius was gradually increased from 0.4 to 1.0 pixels. After each triangulation iteration, 16 
sub-iterations of particle shaking using an image matching scheme with analytic cost function (Jahn et al., 2021) were carried 
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out. The tracks selection was based on a Wiener-filter-type fit. Starting from the fifth time step, a predictor for the 
identification of new tracks was constructed from the average velocity from the six closest neighbouring tracked particles, 
with a search radius of 4.5 pixels. After the STB processing, the raw particle positions were fitted using the TrackFit approach 
(Gesemann et al., 2016), which employs a system of 1D cubic-B-splines to yield a continuous and smooth function for each 
dimension of the track. 
 
3.3.2 INRAE: KLPT, LaPIV and LCTI 
The INRAE group made use of three algorithms. The Kernelized LPT (KLPT) approach (Yang and Heitz, 2021) initializes 
the tracer particle distribution in physical space via the IPR method (Wieneke, 2013). Then, KLPT adopts a sampling strategy 
that firstly forecasts a cloud of one particle’s possible position at time k from the particle’s sampled history up to time k–1, 
followed by projecting the ensemble prediction into image space using the OTF. Successively, a function mapping the image 
pixel intensities to the particles’ 3D coordinates is learned by minimizing a regularized empirical risk. This risk measures the 
discrepancy between the sample-predicted position at time k and the mapping function output value taking the sampled image 
projection as input. Finally, the learned function is applied to the image recording at time k to yield the best flow variable. 
Such optimisation problem is solved using kernel methods (Hofmann et al., 2008). The raw particles positions were then 
regularised using a spline method. The velocity and acceleration were computed via analytical derivation in time of the spline 
curves. For track lengths smaller than five samples, the finite difference method was used instead of the spline regularisation.  
At the highest seeding densities (ppp ≥ 0.12), the images were processed also with the Lagrangian PIV approach (LaPIV, 
Yang et al., 2019), which has been described already in section 3.1.3 for the image analysis of the TP case. 
Finally, the Lagrangian Coherent Tracks Initialisation (LCTI) approach from Khojasteh et al. (2021) was also employed. The 
method initialises new tracks at every iteration of the STB or KLPT processing based on the local Lagrangian information of 
the particles. In particular, the concept of the Finite-Time Lyapunov Exponent (FTLE, Ott, 2002) is exploited locally to 
identify LCS ridges (e.g. boundaries) in the flow field, and ensure that the newly-added and the recovered lost tracks are 
coherent with the neighbouring existing tracks. 
  
3.3.3 IOT: Open-LPT 
The IOT group processed the TR data via the STB algorithm C++ implementation from the OpenLPT project (Tan et al. 
2020). The following STB parameters were used: 2D particle image detection with intensity threshold of 24 counts and 3-
point Gaussian subpixel interpolation; maximum triangulation error of 0.015 mm (0.255 pixels); 4 outer and inner loop 

iterations, with the shaking step of 0.04 mm (0.68 pixels). The possible particle’s shift between two consecutive frames was 
limited to 0.42 mm (7.14 pixels). The search radius for particles detection based on a predictor was 0.1 mm (1.7 pixels). Three 
initial predictor fields were obtained by particle space correlation on a Cartesian grid with 1.25 mm spacing, using spherical 
interrogation windows of 2 mm radius. The resulting velocity at the particles’ locations were validated via a spatial moving 
average filter. The particles positions at successive time instants were predicted using a Wiener filter. Weighted cardinal 
B-splines (Gesemann et al. 2016) were employed to regularise the particles’ positions and in turn determine their velocities 
and accelerations. 
 
3.3.4 LaVision: Time-resolved Shake-The-Box 
LaVision made use of the DaVis 10 implementation of the Shake-The-Box algorithm (Schanz et al., 2016), employing four-
frame track search initialisation. For ppp > 0.12, spatial filtering of the trajectories via a median filter was conducted during 
the STB iterations to remove spurious tracks. For ppp = 0.2, the particles’ reconstruction was carried out marching both 
forward and backward to enhance its accuracy. The particles’ raw positions were regularised with a second order polynomial 
least square regression over a kernel of 7 samples, from which the velocity and acceleration were determined via analytical 
differentiation in time.  
 

4 Results 

4.1 Two-pulse test case  
It is well established that the particles’ reconstruction accuracy is dependent on the particles’ concentration or number of 
particles per pixels (ppp) (Scarano, 2012), with decreasing quality of reconstruction for increasing ppp. Figure 2 illustrates 
the true particles (red crosses) and the reconstructed particles (black circles) in sub-domains of the measurement volume, for 
selected increasing ppp values from 0.005 (top row) to 0.16 (bottom row). At the lowest ppp value, most algorithms succeed 
in correctly reconstructing almost the totality of the true particles, with no ghost particles or missed particles appearing in the 
considered sub-volume. The only exception is the result from ETHZ, which presents several ghost particles and a few missed 
particles. 
When the ppp value is increased to 0.08, the difference in performance among the processing algorithms becomes more 
noticeable. The DLR and LaVision implementations of STB enable to reconstruct correctly a very high percentage of the true 
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particles without the appearance of ghost particles. Also, the INRAE LaPIV approach shows good particles reconstruction 
capabilities, with only a few ghost and missed particles present. The other processing algorithms, instead, are more prone to 
ghost particles (ETHZ) or missed particles (ONERA). The DLR and LaVision algorithms retain their high performances even 
at the highest ppp value of 0.16, where only a few ghost and missed particles appear in the domain. Conversely, the result 
from the ETHZ algorithm maintains a large amount of ghost particles in the analysed sub-domain.  
 

 

 

  

Figure 2: Comparison between true particles (red crosses) and reconstructed particles (black circles) in sub-domains of the entire 
measurement volume, for the two-pulse (TP) case. Top: ppp = 0.005. Middle: ppp = 0.08. Bottom: ppp = 0.16. Notice that, for sake of 
clarity, smaller sub-volumes are selected for the ppp = 0.08 and ppp = 0.16 cases. 
 
The results in terms of percentages of correctly reconstructed particles and false positives (ghosts) are illustrated in Figure 3. 
The percentages are computed relative to the number of true particles in the measurement domain, averaged over the two 
time instants. It can be noticed that the results from DLR and LaVision exhibit a close-to-perfect reconstruction, with nearly 
all particles correctly reconstructed at all ppp values, and no ghost particles. Also, the ETHZ algorithm correctly reconstructs 
more than 90% of the true particles at all the ppp values; however, the number of ghost particles is equal to or even exceeding 
that of the true particles. The results of the ONERA and INRAE LaPIV algorithms have been submitted only up to ppp = 0.08; 

within these range of seeding concentrations, the approaches exhibit good particle reconstruction capabilities, with over 95% 
of the true particles correctly reconstructed. The INRAE algorithm is found to be more prone to ghost particles, with up to 
5% false negatives recorded at ppp = 0.08.  
The positional mean error magnitude as a function of the ppp is illustrated in Figure 4. At the lowest ppp (equal to 0.005), all 
algorithms exhibit a positional error of around 0.04 	
���, except the ETHZ algorithm which features an error of 0.28 	
���. In 
general, the positional error increases with the seeding concentration, although the slope of the increase varies depending on 
the algorithm. For the DLR approach, the increase is very mild and the error value reaches 0.06 	
��� at the highest ppp of 
0.16. The error increase is slightly higher for the LaVision implementation of the two-pulse Shake-The-Box algorithm, with 
the error reaching 0.10 	
��� at ppp = 0.16. The INRAE LaPIV result follows closely that of LaVision up to ppp = 0.08. The 
ONERA algorithm exhibits a higher error increase with ppp, with error values of 0.17 pixels at ppp = 0.08. The error from 
the ETHZ approach is in the range 0.2-0.3 	
��� at all seeding concentration analysed and shows a non-monotonic variation 
with the ppp.   
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Figure 3: Left: percentage of the correct particles (relative to the number of true particles), as a function of the number of particles per 

pixels (ppp) in the images. Right: percentage of false particles (ghosts) as a function of the ppp. The symbol keys apply to all figures. All 

results are for the two-pulse (TP) test case.  
 
 

 
Figure 4: Mean positional error magnitude (considering all three position components, and both time instants) as a function of the ppp, for 

the TP test case. 
 
The analysis of the histograms of the positional errors (not shown here) highlights that the positional errors along the 

Z-direction are two to three times larger than those along the X- and Y-directions due to the given limitation of the camera 

system aperture (+/- 30 °), and that the random errors dominate over the bias errors. The latter are typically null, except for 

the X-position component with the ONERA algorithm and the Z-position component with the LaVision algorithm, where 

they remain within 0.02 	
���. Additionally, the errors appear to be uniformly distributed in the entire measurement domain, 

with no significant spatial variations.  
 

4.2 Four-pulse test case 
The distribution of true particles (red crosses) and reconstructed particles (black circles) in sub-domains of the measurement 

volume for two sample ppp values, namely 0.050 and 0.160, are shown in Figure 5. At the lower seeding concentration of the 

two, both the DLR and the LaVision algorithm correctly reconstruct all the particles in the visualised sub-volume, with neither 

ghost nor missed particles. At the highest ppp of 0.160, the two algorithms still retain their high performance in particles 

reconstruction; only a few particles are missed by the LaVision algorithm, whereas the DLR algorithm correctly reconstructs 

all of them. Even at this high value of the seeding concentration, no ghost particles appear.    
The quantitative analysis of the percentages of correctly reconstructed particles, false particles (ghosts), correct tracks and 

wrong tracks is presented in Figure 6. The DLR algorithm exhibits outstanding performances, with nearly all particles and 

tracks correctly reconstructed at all the analysed seeding concentrations, and percentages of ghost particles and wrong tracks 

below 0.05% and 0.15%, respectively. The LaVision implementation features a slightly higher sensitivity to the seeding 
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concentration, with a small decrease of the performance at the highest ppp. Nevertheless, the percentages of correctly 
reconstructed particles and tracks remain above 90% even at the highest ppp, and the amount of ghost particles and wrong 
tracks does not exceed 0.15% and 0.6%, respectively. 
 

    
 
Figure 5: Comparison between true particles (red crosses) and reconstructed particles (black circles) in sub-domains of the entire 
measurement volume, for the four-pulse (FP) case. Top: ppp = 0.05. Bottom: ppp = 0.16. Notice that, for sake of clarity, a smaller sub-
volume is selected for the ppp = 0.16 case. 
 
 

 
 

  
Figure 6: Percentages of correct particles (top-left), missed particles (ghosts, top-right), correct tracks (bottom-left) and wrong tracks 
(bottom-right) as a function of the ppp. The symbol keys apply to all figures. All results are for the four-pulse (FP) test case. 
 
The mean error magnitudes of position, velocity and acceleration, all evaluated at the intermediate time instant tM, are 
illustrated in Figure 7 for varying seeding concentrations. As explained in section 3.2, also the results from a fictitious 
participant “Hacker” are shown for reference; the latter made use of the exact particles positions and a second-order 
polynomial regression to retrieve position, velocity and acceleration at the intermediate time instant. Hence, the results from 
Hacker are regarded to as the minimum errors attainable in case of perfect particles reconstructions. From Figure 7 top-left, 
it is clear that the minimum positional error of the DLR and LaVision algorithms is almost one order of magnitude larger than 
that from Hacker, indicating a clear margin for further improvement of the reconstruction accuracy. The positional error 
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increases linearly with the seeding concentration. The error increase is mild with the DLR algorithm, with maximum errors 

below 0.05 	
��� at the highest ppp; a steeper increase occurs with the LaVision algorithm, although the errors remain well 

below 0.1 	
��� even at ppp = 0.16. Instead, the positional errors from Hacker are independent of the seeding concentration 

and attain a value of about 0.005 	
���. 
The velocity retrieved with the DLR algorithm exhibits an error of about 0.4% of Vꝏ (Figure 7 top-right), with negligible 

variations with the ppp. Such error is of the same order as that of Hacker (0.3% of Vꝏ), thus indicating that the temporal 

modulation due to the finite temporal resolution plays a significant role. The velocity error of the LaVision algorithm shows 

more pronounced variations with the seeding concentration, increasing from 0.4% to about 0.6% of Vꝏ at the highest seeding 

concentration. 
The mean acceleration error magnitude (Figure 7 bottom-left) is of the order of 10 m/s2, or 22.5% of the reference acceleration 

Vꝏ
2/D. The values of the two algorithms are very close to those of Hacker, and show only minor variations with the amount 

of particles per pixel. As for the velocity, this result suggests that the error is mainly dominated by the temporal resolution 

effects, rather than by the uncertainty in the particles positions. For reference, the mean acceleration magnitude is plotted as 

a thick grey line, which attains a value of 15 m/s2. Hence, it can be concluded that the errors of the measured acceleration are 

as large as 60% to 80% of the mean acceleration magnitude. 
 

  

 

Figure 7: Mean error magnitude of position (top-left), 

velocity (top-right) and acceleration (bottom-left) as a 

function of the ppp. All quantities are computed at the 

intermediate time instant tM and only for the correct 

tracks. The symbol keys apply to all figures. The thick 

grey line in the acceleration error plot represents the 

mean acceleration magnitude. 
 

 

4.3 Time-resolved test case 
The use of temporal information is expected to enhance the quality of the particles’ reconstruction, thus enabling accurate 

particles’ reconstructions at higher ppp values. Figure 8 illustrates the distribution of true particles (red crosses) and 

reconstructed particles (black circles) in sub-domains of the measurement volume, for values of the ppp equal to 0.005, 0.08 

and 0.2. At the lowest seeding concentration, all algorithms are able to reconstruct the large majority of the particles, with 

only a few particles missed by the approach submitted by IOT (first row of Figure 8). Similar performances are achieved also 

at ppp = 0.08, with almost no missed or ghost particles for all algorithms, except for the IOT result. At the highest ppp level 

of 0.2, larger differences among the algorithms are reported. The IOT submission correctly reconstructs only a small 

percentage of the true particles, and exhibits a large number of false negatives (missed particles). The INRAE LaPIV 

algorithm yields large amounts of both false positives (ghost particles) and false negatives. Conversely, the DLR and the 

LaVision algorithms maintain high reconstruction accuracy even at such high concentration, with a limited number of missed 

particles (higher for the LaVision algorithm) and no ghost particle.  
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Figure 8: Comparison between true particles (red crosses) and reconstructed particles (black circles) in sub-domains of the entire 
measurement volume, for the time-resolved (TR) case. Top: ppp = 0.005. Middle: ppp = 0.08. Bottom: ppp = 0.20. Notice that, for sake of 
clarity, a smaller sub-domain is selected for ppp = 0.08 and 0.20. 
 
The quantitative analysis of the particles reconstruction at all the ppp values is reported in Figure 9. The percentage of 
correctly reconstructed particles is very close to 100% in the entire range of ppp values for both the DLR and LaVision 
algorithms, as well as for the INRAE KLPT and LCTI algorithms in the range of submitted results (up to ppp = 0.08) and for 
the INRAE LaPIV result at ppp = 0.12. The latter algorithm shows a significant degradation of its performance for larger ppp 
values; in particular, at ppp = 0.2, only 10% of the true particles are correctly reconstructed, and the number of ghost particles 
exceeds 70%. The IOT submission exhibits a high sensitivity to the tracers’ concentration, with the percentage of particles 
correctly reconstructed decreasing progressively from 95% to 10% in the considered range of ppp values; nevertheless, the 

number of ghost particles remains always well below 1%.    
 

  
Figure 9: Left: percentage of the correct particles (relative to the number of true particles), as a function of the number of particles per 
pixels (ppp) in the images. Right: percentage of false particles (ghosts) as a function of the ppp. All results are for the time-resolved (TR) 
test case, and considered the fitted particles’ positions. The symbol keys apply to both figures. 
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The mean error magnitudes of the fitted position, velocity and acceleration for all ppp values are shown in Figure 10. The 

velocity and acceleration errors are also compared with the result from Hacker to assess the role of the temporal discretisation. 

The positional errors range between 0.02 and 0.5 	
���  depending on the algorithm and the seeding concentration, with a 

general trend of increased error values for increasing ppp. Such increase is very mild for the DLR algorithm, where the error 

remains below 0.05 	
��� at ppp = 0.2. The INRAE KLPT, INRAE LCTI and the LaVision algorithms exhibit a slightly larger 

error increase, with the latter approach yielding an error above 0.1 	
��� at the largest ppp. The INRAE LaPIV algorithm 

features a much higher sensitivity to the ppp value beyond 0.12, indicating that the algorithm diverges for high seeding 

concentrations. Finally, the IOT approach shows a steep error increase already from the lowest analysed ppp value. 
The velocity errors range between 0.3% and 2.5% of the bulk velocity Vꝏ for all cases except for the INRAE LaPIV algorithm 

beyond ppp = 0.12. As already discussed, in the latter case the algorithm diverges thus yielding invalid results. The DLR 

algorithm provides the lowest errors, always below 0.5% of Vꝏ, which are very close to the minimum attainable values 

(Hacker errors: 0.25% of Vꝏ). The other algorithms exhibit a slightly more pronounced sensitivity to the seeding density, 

yielding velocity errors that increase from below 1% of Vꝏ at ppp = 0.005 to above 1.5% of Vꝏ at the highest ppp. The 

acceleration errors from Hacker, DLR, LaVision and IOT show very little dependence on the ppp value. The Hacker result 

already exhibits an error of the order of 8 m/s2 or 18% of the reference acceleration Vꝏ
2/D: this is a clear indication that, in 

the current test case, modulation errors due to the finite temporal resolution are predominant with respect to the random errors. 

Most of the algorithms provide acceleration errors between 25% and 35% of Vꝏ
2/D, with the lower errors achieved with the 

DLR algorithm. Nevertheless, these acceleration error values are between 50% and 100% of mean magnitude of the actual 

acceleration, thus highlighting the inadequacy of the algorithms to correctly resolve the flow acceleration in the current test 

case. The INRAE algorithms return the highest acceleration errors, which increase with the seeding density well above of the 

actual acceleration magnitude.  
 

  

 

Figure 10: Mean error magnitude of position (top-left), velocity 

(top-right) and acceleration (bottom-left) as a function of the ppp. 

The position error is evaluated based on the fitted particles 

positions. The symbol keys apply to all figures. The thick grey line 

in the acceleration error plot represents the mean acceleration 

magnitude. 
 
 

 

5 Conclusions 
The main results of the Lagrangian Particle Tracking challenge organised within the framework of the European Union’s 

Horizon 2020 project HOMER (Holistic Optical Metrology for Aero-Elastic Research) are presented. The challenge 

employed a synthetic experiment where the wall-bounded flow in the wake of a cylinder was simulated. Particle images were 

acquired with four synthetic cameras at different seeding concentrations corresponding to a range of particles per pixel 

between 0.005 and 0.20. Three different image acquisition strategies were considered, namely two-pulse, four-pulse and time-
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resolved acquisitions. Six research groups participated to the challenge. The submitted results were analysed in terms of 
accuracy of particles reconstruction (namely percentages of correct particles, false positives and false negatives), as well as 
based on the errors on position, velocity and acceleration. 
The analysis of the two-pulse case showed that the best algorithms are capable to reconstruct correctly nearly all the particles 
in the entire range of considered ppp values, with a negligible percentage of missed or ghost particles (less the 0.1%). For 
those algorithms, the positional errors were in the range between 0.05 and 0.1 	
���. For the other algorithms, the percentage 
of correctly reconstructed particles remained well above 80%, although some of the algorithms such as that of ETHZ exhibited 
a large amount of ghost particles, of the same order of the true particles. Positional errors up to 0.3 	
��� were recorded. 
Only two research groups participated to the four-pulse test case of the challenge, namely DLR and LaVision, using slightly 
different implementations of the same Multi-Pulse Shake-The-Box algorithm. The results showed the very high performance 
of this algorithm, with over 90% correctly reconstructed particles and tracks at all ppp values (close to 100% for the DLR 
implementation), and less than 0.2% and 0.6% ghost particles and wrong tracks, respectively. The positional errors were in 
the range between 0.03 and 0.08 	
���, showing a slight increase with the seeding concentration. Velocity errors of about 
between 0.4% and 0.6% Vꝏ have been retrieved, slightly larger than the minimum admissible ones (0.3%) obtained by the 
Hacker participant. Conversely, much larger acceleration errors were found, between 60% and 80% of the acceleration 
magnitude, a large part of them being ascribed to temporal truncation. 
The results of the time-resolved test case showed that the best algorithms are capable to perform a close-to-perfect particle 
reconstruction up to ppp = 0.2, with nearly all particles correctly reconstructed and less than 0.1% ghost particles. For those 
algorithms, the positional errors remain below 0.05 	
��� at all ppp values. Other algorithms exhibited larger sensitivity to the 
seeding density, either already from ppp = 0.005 (IOT submission) or only at the higher ppp values (INRAE LaPIV algorithm). 
Positional errors exceeding 0.3 	
��� were found for these algorithms at the highest ppp. The velocity errors range from below 
0.5% Vꝏ for the best algorithm to beyond 4% Vꝏ for the least-performing algorithm. Instead, much larger acceleration errors 
were retrieved, from 50% to several times the acceleration magnitude, also due to the limited temporal resolution of this test 
case. 
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